Imports System.IO
Imports System.Web
Imports System.Data
Imports System.Diagnostics
Imports System.Web.Services
Imports System.Web.Script.Services

<System.Web.Script.Services.ScriptService()> _
<WebService(Namespace:="pdfHTMLDOC")> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class PDFAjaxWebService
 Inherits System.Web.Services.WebService

 <WebMethod(EnableSession:=False)> _
 Public Function ajaxPDFGenerator(ByVal httpURL As String, ByVal httpURLVirtual As String, ByVal rawTxt As String) As XMLPDFDataBlock
 ' Our custom-defined "XML/SOAP" class
 Dim xmlResponse As New XMLPDFDataBlock
 ' An array which will hold chunks of the StandardOutput stream
 Dim generationResultsBin(-1) As String
 ' The location and filename where the temporary PDF will be created (in the case of generating PDF from submitted HTML code)
 Dim localTempLocation As String = "\\webserverA\siteB\folder\temppdf.txt"
 ' The location where the physical PDF will be created
 Dim localSaveLocation As String = "\\webserverA\siteB\folder\files"
 ' The results of operation message to send back
 Dim generationResultsMsg As String = "An error has occurred with the web service."
 ' The URL to point a user to, in order to download the physical PDF
 Dim generationResultsURL As String = "http://www.somesite.com/folder"

 '
 ' Perform requested action
 '
 If Len(httpURL) > 0 Then
 '
 ' Option #1: Call htmldoc and have it create a physical PDF from the URL supplied.
 ' NOTE: htmldoc cannot pull data from a URL, convert that into PDF, and then send that
 ' PDF data to StdOut; there has to be an intermediary save step.
 '
 localSaveLocation = localSaveLocation & "\temppdf.pdf"
 Dim externalProcessPage As ProcessStartInfo = New ProcessStartInfo("htmldoc", "--webpage -f " & localSaveLocation & " " & httpURL)
 externalProcessPage.RedirectStandardOutput = True ' Grab StdOut
 externalProcessPage.RedirectStandardError = True ' Grab any errors (StdErr) that may come up if needed although not handled in this example
 externalProcessPage.CreateNoWindow = True ' No need to create a window for this operation
 externalProcessPage.UseShellExecute = False ' We want the raw output
 Dim runProcessPage As Process = Process.Start(externalProcessPage)
 runProcessPage.Start()
 ' Grab StdOut (null if successful)
 Dim stdoutProcessPage As String = runProcessPage.StandardOutput.ReadToEnd()
 If stdoutProcessPage <> "" Then
 generationResultsMsg = Replace(stdoutProcessPage, vbCrLf, "\n")
 generationResultsURL = ""
 Else
 generationResultsMsg = "A PDF has been created from the web page URL specified."
 generationResultsURL = generationResultsURL & "/temppdf.pdf"
 End If
 ElseIf Len(httpURLVirtual) > 0 Then
 '
 ' Option #2: Create a physical PDF from a static file on server containing html code
 ' (one that does not require parsing from server in order to render correctly).
 '
 localSaveLocation = localSaveLocation & "\temppdf.pdf"
 Dim externalProcessPage As ProcessStartInfo = New ProcessStartInfo("htmldoc", "--webpage -f " & localSaveLocation & " " & httpURLVirtual)
 externalProcessPage.RedirectStandardOutput = True ' Grab StdOut
 externalProcessPage.RedirectStandardError = True ' Grab any errors (StdErr) that may come up if needed although not handled in this example
 externalProcessPage.CreateNoWindow = True ' No need to create a window for this operation
 externalProcessPage.UseShellExecute = False ' We want the raw output
 Dim runProcessPage As Process = Process.Start(externalProcessPage)
 runProcessPage.Start()
 ' Grab StdOut (null if successful)
 Dim stdoutProcessPage As String = runProcessPage.StandardOutput.ReadToEnd()
 If stdoutProcessPage <> "" Then
 generationResultsMsg = Replace(stdoutProcessPage, vbCrLf, "\n")
 generationResultsURL = ""
 Else
 generationResultsMsg = "A PDF has been created from the file containing static html code."
 generationResultsURL = generationResultsURL & "/temppdf.pdf"
 End If
 ElseIf Len(rawTxt) > 0 Then
 '
 ' Option #3: Create a physical file and return the data as stream blocks in XML/SOAP response
 ' (by default, htmldoc cannot pull html code from StdIn).
 ' NOTE: StdIn is limited by the amount of text it can contain anyway.
 '
 ' Save the html code to a temporary file
 Dim objFileSystemObject As StreamWriter
 objFileSystemObject = File.CreateText(localTempLocation)
 objFileSystemObject.Write(rawTxt)
 objFileSystemObject.Close()
 ' Call htmldoc and have it return PDF stream blocks translated from the temporary file containing html code
 Dim externalProcessPageVirtual As ProcessStartInfo = New ProcessStartInfo("htmldoc", "--quiet --webpage -t pdf " & localTempLocation)
 externalProcessPageVirtual.RedirectStandardOutput = True ' Grab StdOut
 externalProcessPageVirtual.RedirectStandardError = True ' Grab any errors (StdErr) that may come up if needed although not handled in this example
 externalProcessPageVirtual.CreateNoWindow = True ' No need to create a window for this operation
 externalProcessPageVirtual.UseShellExecute = False ' We want the raw output
 Dim runProcessPageVirtual As Process = Process.Start(externalProcessPageVirtual)
 runProcessPageVirtual.Start()
 Dim generationResultsBinTemp As String = ""
 generationResultsBinTemp = runProcessPageVirtual.StandardOutput.ReadToEnd
 generationResultsMsg = "The text representation of the binary data generated at StandardOutput will be shown in a series of alert boxes."
 Try
 ' Create a few child nodes for <generationResultsBin></generationResultsBin>
 Dim parseFinished As Integer = 0
 Dim lenBoundary As Integer = 2500 ' Maximum size of a child node before a new child node is created which holds a fragment of StandardOutput
 Dim maximumNodeSize As Integer = 30000 ' Maximum size of all child nodes to be transported. If you want the to be able to transport a SOAP message much larger, you will need to make changes on the server, MaxRequestLength, etc.
 If generationResultsBinTemp.Length < maximumNodeSize Then
 maximumNodeSize = generationResultsBinTemp.Length
 End If
 Do Until parseFinished >= maximumNodeSize
 If parseFinished + lenBoundary >= maximumNodeSize Then
 ReDim Preserve generationResultsBin(UBound(generationResultsBin) + 1)
 generationResultsBin(UBound(generationResultsBin)) = Mid(generationResultsBinTemp, parseFinished + 1, maximumNodeSize)
 Else
 ReDim Preserve generationResultsBin(UBound(generationResultsBin) + 1)
 generationResultsBin(UBound(generationResultsBin)) = Mid(generationResultsBinTemp, parseFinished + 1, lenBoundary)
 End If
 parseFinished = parseFinished + lenBoundary
 Loop
 Catch ex As Exception
 generationResultsMsg = Replace(ex.ToString, vbCrLf, "\n")
 End Try
 generationResultsURL = ""
 Else
 '
 ' Default message when incoming data is blank
 '
 generationResultsMsg = "Neither a URL, harddrive path or HTML code was submitted. No PDF document was created."
 generationResultsURL = ""
 End If

 '
 ' Remove temp file if one was created
 '
 Dim objFile As FileInfo
 objFile = New FileInfo(localTempLocation)
 If objFile.Exists Then
 objFile.Delete()
 End If

 '
 ' Build XML/SOAP stream going back to the user by letting .Net do it for us
 '
 With xmlResponse
 .generationResultsMsg = generationResultsMsg
 .generationResultsURL = generationResultsURL
 .generationResultsBin = generationResultsBin
 End With

 Return xmlResponse
 End Function

End Class
' "XML/SOAP" Class. Does not look like XML/SOAP here, but is described as such so you can see the parallels
' with what is created by using it.
' NOTE: .Net does all the work of creating and maintaining the XML, WSDL, ecetera, based on what we define
' here in our class. No need to handle writing our own definitions/files for XML/SOAP.
' HOW TO GET .Net TO TELL YOU WHAT THE XML/SOAP LOOKS LIKE:
' After performing a build of the project, if you wanted to find out what the XML/SOAP would look like
' that the web service received or sent, you could do the following:
' 1. In browser, type in www.yoursite.com/somefolder/PDFAjaxWebService.asmx?op=ajaxPDFGenerator
' NOTE: You will not be able to test a transaction using the URL and your browser on the server.
' 2. Under Solution Explorer, right-click on 'PDFAjaxWebService.asmx' and choose 'View In Browser'. A
' local session will be created on your local computer (where you are working on the project from)
' and you will have the option to simulate submitting test data to the web service.
' XML/SOAP CREATED BY THIS CLASS WILL LOOK LIKE THE FOLLOWING:
' <ajaxPDFGeneratorResponse xmlns="pdfHTMLDOC">
' <ajaxPDFGeneratorResult>
' <generationResultsBin>
' <string>string</string>
' <string>string</string>
' </generationResultsBin>
' <generationResultsMsg>string</generationResultsMsg>
' <generationResultsURL>string</generationResultsURL>
' </ajaxPDFGeneratorResult>
' </ajaxPDFGeneratorResponse>
Public Class XMLPDFDataBlock
 ' The following basically allows you to have an unlimited number of "child nodes" inside what may be
 ' considered the parent node "generationResultsBin".
 Private _generationResultsBin() As String
 Public Property generationResultsBin() As String()
 Get
 Return _generationResultsBin
 End Get
 Set(ByVal value() As String)
 _generationResultsBin = value
 End Set
 End Property
 ' This is the equivalent of a single XML node, which holds one value which is of the type "string".
 Private _generationResultsMsg As String
 Public Property generationResultsMsg() As String
 Get
 Return _generationResultsMsg
 End Get
 Set(ByVal value As String)
 _generationResultsMsg = value
 End Set
 End Property
 ' This is the equivalent of a single XML node, which holds one value which is of the type "string".
 Private _generationResultsURL As String
 Public Property generationResultsURL() As String
 Get
 Return _generationResultsURL
 End Get
 Set(ByVal value As String)
 _generationResultsURL = value
 End Set
 End Property
End Class
